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Abstract

This paper presents a coupled method for structural damage identification. Firstly, the damage localization criterion

(DLC) is defined to determine the damaged degree-of-freedom (dof). Then the damaged elements can be ascertained

according to the relation between the element number and the dof number. The natural frequency sensitivity method is

employed to obtain damage extents with the damaged elements determined. The presented method is demonstrated on a

simply supported beam. Results show that the method is simple and effective for structural damage detection.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Detection, location and quantification of damage in a structure via techniques that examine changes in
measured structural vibration response have attracted much attention in recent years. The method widely used
to detect damage in structures is using modal frequency changes for the lower natural frequency can be easily
and precisely measured in practice. Biswas et al. demonstrated that a decrease in natural frequencies could be
used to detect damage in a highway bridge [1]. Vandiver used the same principle to determine the occurrence
of damage in offshore structures [2]. Messina et al. used the natural frequency sensitivity analysis to determine
damage locations and extents [3,4]. These methods seem to fail to locate and quantify damages sometimes
since modal frequencies are a global property of the structure, which are especially obvious for the
symmetrical structure.

As mode shapes can provide much information than natural frequency, many researchers have devoted
their efforts to detect damages with mode shape information or both mode shape information and natural
frequency information. Pandey et al. used the changes in the mode shape curvature to detect and locate
damage [5]. Mannan and Richardson located structural cracks by using the difference in the stiffness matrices
of structures before and after damage [6]. Park et al. utilized a stiffness error matrix method to determine the
damage locations in a structure [7]. Gysin point out that the error matrix method is effective only when all
modes of the structure are included or at least those modes that are influenced most by the damage [8]. Pandey
and Biswas developed a method to locate damages using changes in the flexibility matrix of the structure [9].
This approach is feasible since the structural flexibility matrix can be obtained accurately by using only a few
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of the lower frequency modes. Later they demonstrated the effectiveness of the flexibility change method using
experimental data [10]. The disadvantage of their method is that results of damage localization depend on the
conditions of the structural boundary. However, in actual engineering the structural boundary condition is
difficult to determine ideally. Shi et al. used the change of modal strain energy in each structural element as a
damage indicator before and after the occurrence of damage [11]. The elemental modal strain energy is defined
as the product of the elemental stiffness matrix and the second power of the mode shape component. They
improved this method to quantify damages by deriving the sensitivity of the modal strain energy with respect
to a damage [12]. In general, these methods based on the mode shape information can locate the probable
damages preliminary, but the absolutely accurate damage localization is impossible and the damage
quantification result often has large error because the measured mode shapes include large measurement noise.

In this paper, a coupled method to identify damage is presented that combines the advantages of the above
two class methods. Firstly, as an extension of the flexibility matrix change method, a damage localization
technique is presented using the change of flexibility matrix and the stiffness matrix of the intact structure. The
damage localization criterion (DLC) is defined to determine the damaged degree-of-freedom (dof) and then
the probable damaged element can be ascertained according to the relation of the dof number and the element
number. After the suspected damaged elements are determined, the natural frequency sensitivity method is
employed to obtain damage extents. The presented approach is verified via an example of a simply supported
beam. Results show that this coupled method is effective to detect structural damage.

2. Damage localization

Assume that the stiffness matrix and flexibility matrix for an n dofs system are K and G, then we have

KG ¼ I . (1)

Eq. (1) can be expressed as

k1 k2 � � � kn

� �
g1 g2 � � � gn

h i
¼ I , (2)

where ki and gi(i ¼ 1�n) are the stiffness vector and flexibility vector of the ith dof in the stiffness matrix and
flexibility matrix. From Eq. (2) we obtain

kT
i gi ¼ 1. (3)

For the intact and damaged structure, Eq. (3) is

kT
uigui ¼ kT

digdi ¼ 1, (4)

where kui and gui are the stiffness vector and flexibility vector of the ith dof for the undamaged structure, while
kdi and gdi are the stiffness vector and flexibility vector of the ith dof for the damaged structure. The stiffness
vector is unchanged for the undamaged dof, that is

kui ¼ kdi. (5)

Substituting Eq. (5) into Eq. (4) yields

kT
uiDgi ¼ 0, (6)

where

Dgi ¼ gdi � gui, (7)

Dgi is defined as the flexibility-increased vector of the ith dof. The stiffness vector is changed for the damaged
dof, i.e.,

kuiakdi. (8)

Substituting Eq. (8) into Eq. (4) results in

kT
uiDgia0. (9)
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Eqs. (6) and (9) indicate that the damaged dof can be determined by that kT
uiDgi is zero or not. We define

kT
uiDgi as the DLC of the ith dof. Those non-zero DLCs are associated with the damaged dofs. Now let us

derive the equations to compute the flexibility-increased vector Dgi.
With mode shapes normalized to unit mass, the flexibility matrix can be obtained approximately by using

only a few of the lower frequency modes, i.e.,

G ¼
Xm

j¼1

1

lj

fjf
T
j , (10)

where lj and fj are the jth eigenvalue and eigenvector, respectively, m is the number of measured modes. For
the intact and damaged structure Eq. (10) changes to

Gu ¼
Xm

j¼1

1

luj

fujf
T
uj ; Gd ¼

Xm

j¼1

1

ldj

fdjf
T
dj , (11,12)

respectively, where Gu and Gd are the flexibility matrices of the intact and damaged structure, luj ;fuj and
ldj ;fdj are the jth eigenvalue and eigenvector of the structure before and after damage. The flexibility matrix
change can be obtained as

DG ¼
Xm

j¼1

1

ldj

fdjf
T
dj �

Xm

j¼1

1

luj

fujf
T
uj . (13)

As a result, Dgi has been obtained, which is the ith column in DG.
For beam structures, only the transnational dofs are used in the calculation of the DLC since it is

difficult to measure the rotational dofs. The DLCs with larger absolute values are associated with the damaged
dofs, so we can find damaged elements according to the relation between the element number and the
dof number.
3. Damage quantification

Since those damage quantification methods using mode shape information are all inevitably affected by the
large measurement noise of mode shapes, a better choice to obtain the damage extent is only using the natural
frequency information because the lower natural frequencies can be measured very precisely. In this paper, the
natural frequency sensitivity method [3,4] is employed to identify damages after damages are located using
the DLC. Without loss of generality, assuming that the number of the suspected damaged elements is r and the
corresponding damage parameters are a1; a2; . . . ; ar, the damage quantification formulation from measured
modal frequencies with the first-order approximation is as follows:

Dl1
Dl2

..

.

Dlm

8>>>><
>>>>:

9>>>>=
>>>>;
¼ Sf

a1
a2

..

.

ar

8>>>><
>>>>:

9>>>>=
>>>>;
, (14)

where Sf denotes the first-order sensitivity matrix of natural frequencies and Dlj(j ¼ 1�m) is the change of the
natural frequency before and after damage. From Eq. (14), the damage extents can be obtained as

a1
a2

..

.

ar

8>>>><
>>>>:

9>>>>=
>>>>;
¼ Sþf

Dl1
Dl2

..

.

Dlm

8>>>><
>>>>:

9>>>>=
>>>>;
. (15)
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4. Numerical example

A simply supported beam structure (shown in Fig. 1) is taken as an example to verify the proposed method.
The basic parameters of the structure are as follows: E ¼ 200GPa, r ¼ 7:8� 103 kg=m3,
I ¼ 1:0416� 10�6 m4, and A ¼ 0:0025m2. The beam is modeled using 12 elements giving 24 dofs and the
length of each element is L ¼ 0:1m. dofs are numbered from left to right. Natural frequencies and mode
shapes are contaminated with 0.1% and 5% random noises, respectively.

4.1. Single damage

Assume that a single damage occurs in the 7th element with a stiffness loss of 15%. When only the
transnational dofs are measured and the first four modes are included to conduct the computation, the DLC is
shown in Fig. 2. The transnational dofs numbered 6 and 7 are damaged from Fig. 2, which are exactly
associated with the 7th element. Using Eq. (15) the damage extent without noise and with noise can be
obtained as a7 ¼ 0:1686 (12.4%) and a7 ¼ 0:1693 (12.9%), respectively. The value in bracket denotes the
comparative error between the calculated value and the assumed value.
1 2 3 4 5 6 7 8 9 10 11 12

Fig. 1. A simply supported beam.
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Fig. 2. DLC with element 7 damaged using incomplete modes.
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Fig. 3. DLC with elements 2 and 7 damaged using incomplete modes.
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4.2. Multiple damages

Assume that two damages occur in the 2nd and 7th elements with two stiffness losses of 10% and 15%,
respectively. The DLC using incomplete modes is shown in Fig. 3. The 2nd and 7th elements can be identified
to be damaged elements. Again, damage extents without noise can be obtained as a2 ¼ 0:1115 (11.5%) and
a7 ¼ 0:1604 (6.9%), respectively. When noise are considered, damage extents are a2 ¼ 0:1126 (12.6%) and
a7 ¼ 0:1642 (9.5%), respectively. If the damage is not small, a second-order approximation on the damage [4]
can be performed or an iteration scheme [12] can be used to estimate damage extents more precisely.

5. Conclusion

A coupled method for structural damage identification is presented. The approximate change of the
flexibility matrix is calculated previously using a few lower modes to obtain the DLC. The DLC is then used to
localize damage. With the suspected damaged element determined, the natural frequency sensitivity method is
used to obtain the damage extent. The proposed method is demonstrated on a simply supported beam and
results show that the presented method is simple and effective to detect structural damage.
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